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LETIXR To THE EDITOR 

Some extensions of the renormalised series approach 

E J Austin? and J KillingbeckS 
t Physical Chemistry Laboratory, University of Oxford, England 
$ Physics Department, University of Hull, England 

Received 19 May 1982 

Abstract. The non-Stieltjes renormalised series given by the hypervirial approach are 
empirically found to be summable by Pad6 methods (using the plateau criterion). The 
resulting energy estimates are exact, as shown by using an alternative power series method 
also based on the renormalisation approach. 

In a recent work Killingbeck (1981) has used the hypervirial method to obtain 
renormalised perturbation series for the perturbed oscillator and for the s states of 
the perturbed hydrogen atom Hamiltonian 

H = - '  2V - Zr-' + Ar. (1) 

The renormalisation approach involves partitioning the potential energy so that the 
unperturbed part involves a modified nuclear charge, and uses the potential 

(2) 

with p = 2 -KA. The unperturbed eigenvalue then takes the form Eo = -p2/2n2 and 
it is the only information needed to start off a hypervirial calculation which gives the 
perturbation series for the energy and ( r " )  values (Swenson and Danforth 1972, 
Killingbeck 1978). Since the exact energy is K independent it seems reasonable, 
when given only a finite number of terms of the perturbation series, to choose K so 
that dEN/aK is zero, when EN is the sum to N terms of the energy series (for a given 
A ) .  This criterion produces ground state energies better than those obtained from 
Pad6 approximants to the usual (K = 0) perturbation series. The K = 0 series is an 
alternating one of Stieltjes type, but for K # 0 the coefficients stick together in blocks 
of the same sign. Table 1 shows some ground state (1s) energy coefficients for three 
K values at A = 1. 

Since the K # 0 series are not of Stieltjes type, Killingbeck (1981) did not try a 
Pad6 approximant analysis, but noted that use of the plateau criterion aEN/aK = 0 
gives an energy estimate which, although fairly good, fluctuates as N increases. In 
this work we extend his work in three respects. First, we show that use of the plateau 
criterion gives energy results which tend smoothly to a stable (and exact) energy value 
as N increases, if EN is the [N/2, N / 2 ]  Pad6 approximant to N + 1 terms (including 
Eo) of the renormalised series. Second, we show that the procedure works equally 
well for states with 1 = 1 and 2; to treat such states involves adding the usual term 
al( l+ l)r-2 to the radial potential and making the appropriate modification of the 
double-precision hypervirial program used by Austin (1980). Third, we show how 

V ( r )  = -Kr-' + A  ( r  -Kr-') 
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Table 1. Some perturbation coefficients for the 1s state (A = 1). 

N K = O  K = -1.251. K = - 3  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

-5E- 1 
1.5EO 

6.75E0 

4.803 75E2 

7.455 733 593 7E4 

1.832 917 144 E7 

-1.5EO 

-4.968 875E1 

-5.583 E3 

-1.114 319 335 E6 

-2.351 25EO 
3.479 166 666 7E0 

-4.694 072 931 E-  1 
9.882 188 239 1E - 2 
8.647 494 806 8E-3 

-7.716 533 692 SE-3 
-1.818642 5247E-3 

1.373 422 367 8E - 3 
4.611 297 0804E-4 

-3.283 226 957 4E-4 

-8E0 
1.237 5E0 

-4.224 609 375 EO 
1.937 713 623 E-  1 
1.273 596 882 8E- 1 
7.535 443 268 7E - 2 
3.730 355 459 3E-2 
1.220 406 346 5E - 2 

-1.815 9106883E-3 
-7.370 944 510 6E-3 

t K = -1.25 is the plateau midpoint for A = 1 (see text). 

the renormalisation idea can be used to give a power series approach to the Hamiltonian 
(1) which gives very good eigenvalues for both Dirichlet and Neumann boundary 
conditions imposed at any r value. Using a large r value enables us to check the 
results from the hypervirial method. 

When A and N + 1, the (odd) number of terms used are fixed, it is found that the 
corresponding diagonal approximant [ N / 2 ,  N / 2 ]  has a plateau region extending over 
a wide range of K values. If stationarity to a given number of decimal places is 
demanded then the plateau width increases with N. Tatile 2 shows some results for 
the 1s state at A = 0.2.  The plateau extends between KO* U / 2 .  Table 3 shows some 

Table 2. Plateau midpoint and width for the [N/2, N/2] approximants. (1s state, A = 0.2). 

N KO hK E t  

8 -1.8 0.4 -0.235 648 
10 -1.7 0.6 -0.235 6474 
12 -2.1 1.2 -0.235 647 41 
14 -2.5 2.0 -0.235 647 405 
16 -2.75 2.7 -0.235 647 405 
18 -2.8 3.6 -0.235 647 405 
20 -3.1 5.0 -0.235 647 405 

+ These digits stable along the plateau. 

Table 3. Comparison of energy estimates from different methods. (only digits after the 
colon shown in last two columns). 

State and A N E(K = 0)t  ,!?(plateau) Elexact)$ 

Is, 0.2 14 -0.2356:5 47 405 47 405 
Is, 1.0 22 0.5779: 21 352 21 352 
2s, 0.15 20 0.466: 659 659 084 
3s, 0.02 22 0.137:l 0844 084 408 
2p, 0.15 18 0.3:6 582 967 58 296 694 
3d, 0.02 18 0.0926: 06 733 06 733 
~~ 

t Stable digits from diagonal approximant sequence for K = 0 series 
'4 Using the power series method described in the text. 



Letter to the Editor L445 

typical results obtained using the approach described above and compares them with 
the Pad6 approximant results for the K = 0 series and with the results of a power 
series calculation. This latter calculation involves applying the renormalisation idea 
in a different form, writing the eigenfunction 11 of the Hamiltonian (1) as a product 
exp(-pr)YJ.’(r), where Yl is a solid harmonic of degree 1. The first two factors 
represent a hydrogenic function for some renormalised nuclear charge. If A is zero 
in (1) then the choice p = (I + 1)-’ gives E = -&I ’, an unperturbed hydrogenic energy, 
with F(r)  = 1. For non-zero A, however, F(r)  will be an infinite series for any choice 
of p, although varying f l  will help to speed up convergence. Taking F(r)  in the form 

F(r)  = A,rn = T,, (3) 
leads after some tedious algebra, to the recursion relation 

3 T N + ~ ( N  i)(N + 21 2) = [(21 + 2 -k 2N)P -2]rT~ -(2E +P2)r2TN-1 -k 2Ar T N - 2 .  (4) 

To use (4), To is set equal to 1 and r is made large (r - 15) if the boundary condition 
I(l(00) = 0 is to be simulated. For a given P and two trial energies, El and Ez, the TN 
and the sum F(r )  are evaluated, starting with TO = 1 and T-l=  T-z = T-3 = 0. If P is 
chosen reasonably the series quickly converge and lead to two values F(r ,El )  and 
F(r, Ez), from which an interpolated energy E can be found which would have given 
F(r, E) = 0. After a few repetitions the eigenvalue corresponding to the boundary 
condition 4(r) = 0 is determined very accurately. Killingbeck (1982) discusses in detail 
how to perform the calculation on a microcomputer and how to use it for Neumann 
as well as Dirichlet boundary conditions. 

The results seem to show that the use of Pad6 approximants gives accurate energies 
from the renormalised series, even though the series are not of Stieltjes type. The 
calculations reported here are for positive A, so that well defined bound states exist. 
For small negative A there will be quasi-bound (resonance) states; the real part of 
the energy of such a state can be estimated using the stabilisation method (Hazi and 
Taylor 1970) or by using a phase shift analysis (Killingbeck 1980). Since increasing 
the number of terms in the renormalised series is presumably analogous to increasing 
the number of basis functions in the stabilisation approach, it may be possible to study 
resonant states for negative A by looking for a minimum in laE/aNl as both N and 
K are varied; this point is still under investigation. 

One of the authors (EJA) wishes to thank St Hilda’s College for a research fellowship. 
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